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OPTIMIZATION OF THE INTERNAL SOURCE IN THE PROBLEM 

F~u~ AROUsu A SPHERE OF MHD ......... 

V. I. Shatrov and V. I. Yakovlev u ~  J ~ 3 . 9  

Studies on the effect of electromagnetic body forces on the hydrodynamic pattern of the 
flow around bodies propelled by internal sources of electromagnetic fields have become of 
interest in connection with the design of magnetohydrodynmn]ic propellers for submarines and 
surface vessels (see, e.g., [I, 2] and their bibliographies), ou~ ...... studies for the case of a 

o E . 1  z _ 1 _  sphere as an example were started in [J-J] for fixed sources, wn• were chosen from qualita- 
tive considerations and are not optimal1. 

Clearly, the distributions of the electric and magnetic potentials at the surface of the 
sphere should be optimum, ensuring that the electrical energy cons~aption for propulsion at a 
given speed be minim-~n. Our goal here is to formulate the complete variational problem for 
determining the optim~il potentials, construct the solutions of some simplified (variational) 
pxuu• and analyze them. 

I. We consider a sphere of radius a with an internal source of fields, which was des- 
cribed in [3]. Electromagnetic fields in a liquid are characterized by the scalar potentials 

E = - -V [q~(r, 0) sin real ,  B = - -V  [X( r, 0) cos ma].  

~t ~ ~ LiF[t~kl The velocity field is . . . . . . . .  to be axisyi~-netric, 

t 
r sin 0 - -  7 g 6 e r  + eo , 

(~ ~.i) 

(Io ~A 

and is described by the stres~n function ,(r, ~ ~x } (the sense of .... Ln~ axisyvcm]etry ass~-nption a,u 
some cov~• cortcerning its applicability are given i n  [3]). x,lu functions ~(r, o), 
x(r, e), ~(r, O), andw(r, O) [vorticity curly = W (r, 0)e~] are determined from the problem 

mX ~ = . J ]  L~ = ~ w ,  L% 0 ( I  

02 2 a t 02 t c o s 0  0 m 2 
L - - - - + - -  + - - - - +  - -  ; 

- - a t  2 r ~ r z 002 r 2 s i n 0  00 r 2 s i n  20  J 
i [a ,  o w o~ o zv ] 1 t E 2 ( r s i n O w ) + N  < c u r l e r > = 0 ;  

2r [ ~ 0 0  r~n0 a0 Or ~sin0 -~ Re r s i n 0  (1.4) 

E 2 ~ _ r w s i n 0 = 0  IE2 a 2 sin0 a t a )  
Or - - ' ~ +  r ~ ~0 s inO aO ; (1.5) 

' i~Khnxcn~Kaya Fizika, No. 3, pp. Novosibirsk. Translated from Prikladnaya Mekhanika i . . . . . . . . . . . . .  
30-38, May-June, 1992. Original article submitted March 19, 1991. 
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x ( i ,  o) = zo (o), ~ (1, o) = % (o), r 0 ,  o) = o, ~ 0 ,  o) = o, 

i 
(1.6) 

The undetermined functions X0(8) and ~ t~ ~0<~; in the boundary conditions (1.6) should be 
found by solving the variational problem of minimizing the functional representing the elec- 

tric power consumption /oUoa3SS~(j'E)dv (integral over the space outside the sphere). The 

problem is simplified if Q= ~ ~ ~(j.E)du is written as an integral over the surface ,of the 

sphere. In the general case (when j is expressed in terms of curl ll) this transition is made 
by using the Poynting vector; a corresponding representation is also possible in the induction- 

uoll~ • r ~t ioll less approximation under ............. since j" E = -div(@j) = -div ff[E + v • B] because div 
J = O. Hence 

Q= ] o)[- + 0)] sin 0 dO. ( 1 . 7 )  
.1 

0 

(The conditions of sticking on the sphere have not yet been taken into account so that this 
form of the functional Q could also be used for an ideal liquid.) 

The sphere under consideration is self-propelled. This means that zero electromagnetic 
tractive force acts on the sphere. This condition can be written as 

oo 

8N f y {<fr (r, 0)> cos 0 --  </o (r, 0)> sin 0}r 2 sin 0dO dr + 
0 1 

;{,[ 1 + ~-~ w (t, 0) -- 4N </o (t, O)> sin ~ 0d0 ---- 0. Or 
0 

i n 
• 

The forces <fr > and <fs> (the angular brackets denote averaging over the angle ~) are ex- 
pressed in terms of the functions $, • ~ and their derivatives from formulas in [61]. 

The variational problem under study thus is a problem for an angular extremum and con- 
sists of choosing the functions $, X, ~, w that would ensure the minimma of the functional 
Q (I 7) with the auxiliary conditions (1.3) r~ ~ ........... -~• u~, the condition of ~•177 (~ "), 
and a condition limiting the scale of the magnetic field. It is most desirable from the 

i_ �9 - i uo,u:tzon as p.ysica• standpoint to formulate the last ......... the requirement that the maxim~:~ value 
of the dimensionless magnetic induction at the surface of the sphere be equal to I, 

IBImaxlr=z = I ( l . g a )  

(the B0 used when the scale is made dimensionless is the maximu~;i magnetic induction at the 
surface)�9 m,_ i,~ simple limitation 

(m~ (~, o) / ~ , 
(•a)max [r=l ~--- \ sin-------~--]max = I (~. 9b~ 

(B0 is the maximm:~ value of B~) is meaningful. Such a limitation cannot be easily implemented 
directly in a variational problem. The imposition of a limitation on the functional, of X(I, 
8) is more suited to the nature of the variational problem. Here we consider limitations of 
the type 

~h:(8) X(t ,0)d0 = const (1.10a) 
0 

o r  

S h~ (0) %2 (1, 0) dO = const 
o ( l . 1 0 b )  
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with given ....... h:(8) ..... ~x the constants in (l.10a) .... r .... ~ ...... unu~en so a i m  k• being •  a l l u  l l 2 i O  ) , 

t h a t  t h e  ~ u •  . . . . . . . .  o b t a i n e d  w u u x u  . . . . .  e n s u r e  s a t i s f a c t i o n  o f  (~• 

var•177 2. Using indeterminate Lagrangian ........... we mU• reduce the formulated - - ~  " -  -~ 
probl~]i to a nonlinear system of eight equations in partial derivatives (for the variables 
~, X, $, w and four Lagrangian multipliers) with the corresponding nonlinear boundary condi- 
tions [6]. The problem is very difficult to solve. 

As the first step we consider the simplest problems, which arise if the velocity field 
around the sphere is replaced by a more appropriate approximation, e.g., the velocity field 
of potential flow with the stream function 

=(l/2)(r~--t/@ s i n  ~ O, (2.1) 

and the hydrod~mamic variables are eliminated from the list of functions sought�9 The first 
of two simplified ......... (problem A) is formulated as follows: p~uuxum~ given the velocity field 
(determined from (2�9 find the optimum distributions X0(~) and @0(8) for which the 
functional 

F = - -  2~ [< / r ( r ,O)>cosO - -  <le(r,O)>sinOlr~sinOdrdO ( 2 . a s  
0 1  

(dimensionless tractive force) takes on a fixed value and the electric power consu,-nption Q 
from (1.7) ..... uecomes a minimum. 

The question of how electromagnetic body forces affect the velocity field and the hydro- 
dynmi]ic drag cannot be raised in this formulation and so instead of the self-propulsion 
requirement (I.8) the condition that a given quantity F be the parameter of the variational 
problem is used. As a result this change the optim-m;~ internal source, constructed by solving 
the simplified problem, gives the minimm-n electric power cons~-nption for generating a given 
tractice force and not for ensuring a given speed of propulsion. Since the required tractive 
force is not known in advance (since the hydrodynamic drag depends entirely on the operation 
of the source), the problem under ............ not make sense at first ~-• 
conclusion is correct if the structure of the optimum source depends on F and specific opti- 
mum functions X0(~) and #0(~) correspond to each value of F. If tile simplified variational 

• to a universal optim~-a source that is independent of F, the solution of this problem . . . .  
unque~t lOltaU• problem is of .......... interest and an internal source so constructed can be used to 

rT  . . . . .  i _  
Uk:LI minimize the power cons~f@tion for ensuring the desired speed. ~e emphasize that a 

I t  . _ J  . . . . .  ~ f t  _ _ 1  . 2 _ . _  un•177 solution still does not give a ~oxut,u, for the complete variational problem 
]_ 31 -  . . . .  1 . . . .  ~_ ._1  J -- 

. . . . . .  I _ ~ r ~ _  _ t i l e  for,,uxatuu in oeu. I, since .... possibility of minimizing Q by  uelxu~rate• uunus the 
hydrodynamic drag is not envisaged for the simplified problems. One more corfffnent about the 

-,_._1 �9 J - ]  ___11 . . . .  11__ l,asmuc. Q as we•177 varxat-u~,a• as F generax• do formulation of the sxmpxifxeu .......... problems: ...... as 
not depend on the velocity field, a question naturally arises as to the validity of using 
(2.1) when calculating the integrated quantities. We give some arguments in support of this 

i__1 - - -  _ _ 1  . . . . . .  1 _2 - - -  
L I I ~  a s s u a - t p t i o n  a n d  r e i n f o r c e  t h e m  u e x o w  w i t h  n u m e r i c a l  r e s u l t s .  S i n c e  i n  ~ t _  ~ x f - p ~ u p u ~ x o n  

r e g i m e  t h e  f l o w  a r o u n d  t h e  s p h e r e ,  a s  s h o w n  i n  p r e v i o u s  s t u d i e s ,  i s  f l o w  w i t h o u t  s e p a r a t i o n ,  
t h e  f l o w  v o r t i c i t y  a f f e c t i n g  t h e  e l e c t r i c  f i e l d  d i s t r i b u t i o n  i n  t h e  l i q u i d  ( s e e  ( •  i s  

. . . . . . . .  a u u u n u a ~ y  l a y e r  r . ~ ]  . . . . .  a t  ~ . . . . .  l l •  Re . . . . . . . .  t h e  b o u n d a r y  t a  c u n c e n L t a t e u  m a i n l y  i n s i d e  t h e  " -  -= . . . .  v u x u ~  
layer may be substantially thinner than the region occupied by the electromagnetic body 
forces, the indicated integrated quantities are determined primarily by the electromagnetic 

c i l l U  f ields outside the boundary layer, where the vor t ic i ty  of the flow i ts  effect on the 
field distribution ca,: be assumed to be zero and its effect on the velocity field is that 

U:SL[• satisfy the homogeneous which stems from the ass~-r~ption ~.~).~ ~ ........................ •  putulztxa• 
equations 

L ~  =0,L% =0. (2.3) 

Elsewhere r._1 vaL•177 problem .... potentials on the LuJ we showed that for a given ..... " --~ L.U 
surface of a sphere are related by 

O~/Orlr=l = k , x ( t . ,  0)~kl  = c o n s t .  ~ , 

l . � 9  Since the derivative .... ~- have =o~/ar satisfies Eq. (2.3), then from ( we 

rO~(r, O)/Or = k:x(r , 0), ( ~ ' j  ~ 
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and, therefore, in the optimized system only one of the two sought distributions r and 
X0(8) remains independent (e.g., assignment of ~0(8) to within a constant factor from (2.5) 
determines X0(~) and conversely). We also showed that if a solution of problem A is to exist, 
the limitation on the scale of the field B must have one of the forms of (I.I0) and (l.ga) or 
(l.9b) cannot be used directly. The form of the optim~a function • depends on h~ and h~ 
from (I.I0), and a specific optim~a distribution corresponds to each value of F, where by 
problem A does not lead to a universal optimm~ function X0(8). 

3 For the transition to the formulation of a new p~u~• we note that condition (2.4) 
does not depend on (i. ~ ~ ~ • and is the result necessary for minimizing Q. In fact (2.4) • 

•177177 and Iv x plies that in the optim~[l system the ....... r au•177 components of the ..... E B] in Ol~a's 
law should be proportional to each other over the entire surface of the sphere, i.e., 

An a n a l o g  o f  c o n d i t i o n  ( 3 . 1 )  was o b t a i n e d  i n  [7]  f o r  an i n f i n i t e l y  w i d e  p l a t e ,  

"- var•177177 for a given -~ - ne formulate a modified ........ problem kpru~• r ........... B) as fu•177 V~• 

of k find the optimm~ distribution X0(~) (or 60(8)) that would ensure maxim m~ efficiency 
tl - F/Q. This problem is important because the sought function X0(S) is universal and inde- 

uurnla•177 condition (I. ~ p e n d e n t  o f  k .  ~ . . . . . . . . . . . . . . . . . . .  ~ o r ~ o v ~ r ,  the ~ is satisfied directly here, 
without the auxiliary limitations (I.I0) that are necessary for ....... A to a p~uuxem have solution. 

~ 0 k o )  _u~_~__~ _~_~_ As a result, the optim~u~ distribution- ~ . . . . .  u~a~neu ensures a h• ~] for all F except t,us~ 
found by solving pruo• ....... A. 

To solve the problem we note that .... uue functionals F ~u .... Q under consideration are ex- 
pressed in terms of the potential ~(r, 8) wq~en ~ = t~.~) is used. In this case 

0 

(t ,  0) 0r (t, 0) sin 0d0, 
or 

(3.2) 

and in .... L.~ expression for F we can a• ~-- isolate a part that represents a surface integral. 

Indeed, since the first term in fz ~ [E X B]~ ~- [(v • B) x B]~ is put into the ........... 

form [E X B]= : div [% • r sinm~B], the expression F = -- S ~ ~fflu reduces to 

F = - -  ~m S ~ (t ,  0) X (t ,  0) sin 0d0 - -  2~ ,{ ~" <[(v x B) • Bl:>rZ sin Odr dO 
0 0 1 

o r ,  when ( 2 . 5 )  i s  t a k e n  i n t o  a c c o u n t ,  t o  t h e  f i n a l  f o r m  

; F = 2~ oq~ (I, 0) sin Od0 -- ~ . .. 3k" q~(t, 0) 0~. - -  { . }drdO, 
0 0 1 

(3.3) 

w h e r e  { . . . } =  ~- r rb-7-~ ~ - 7 c ~  - s m 9  + ks-m-Z-~-frJ \ ~ c o s O  + r~Ts inO 

 ,;on :o:at o,: r ~F ~ \ bT/l 

+ ~-\bT-~/ cosO + 

F gk+~ (2) 2 0 1 

y ~  (t, 8) oq~ (t, 8) sin 8d8 
Or 

0 

3. IN ~7 

depends on coefficient $, which is a functional 8[~0(8)]. We see that the maxim~1 value of 
~] for all k is reached with the same function r that ensures a maxim~[1 of 9- 

Let us assume that such a function ~0(8) does exist. Like X0(8), which is obtained from 
r by (2.5), it is determined to within an arbitrary multiplier. By an appropriate choice 
of the normalizing multiplier, therefore, condition (l.9b) can be satisfied without invoking 
limitations of the type (I.I0). We also note that the optim~ distribution of Xo(@) does not 
depend on k. 
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TABLE I 

--0,939 20 
--0,770 30 
--0,697 

gmax 

--0,680 
--0,675 

OJ 

,'/ 
/ i ,'/ , / / / , ,  
i i /  / ~l 

y,," . . f  . ; /  . 

4t5 8, .de~ 90 

o,I 

0 0 

Fig. 1 Fig. 2 

q 
0,,~- 

o ~o~ ~'~ ~ o ~ ' @~ ; 

Fig. 3 Fig. 4 

• find the ................... use ~- ~uugnt uz~tr•177 we solutions of Eqs. (2.3) in the form of expansions 

in associated Legendre functions: 

r m /--~m X (r, O) = ~ Pl  (cos O), ~ (r, O) ---- 3km AZ 1 P'~ (cos O). 
z=a - -  - -2 -  Z T  1 ,z+l  

(3.5) 

The search for an extremm1~ of $ reduces to a search for the optim~i~ set of coefficients As 
(s = m, m + I, . ..), which is done .~1,er• For all the values of .... L~I~ n-mi~ber of pole 
pairs it proved sufficient to keep 30-40 terms of the series and a further increase in this 

nmmber did not appreciably change the ........ 

l-J), Figure 1 shows the curves of ~ 0t~ (e = , I0 30 =~ o~ ~o) = mx0 ) for m 2 4, , 20, (curves 
characterizing the optimum distribution of B~(I, 0, ~) = [mx(l, e)/sin 0] sin m~ over the 
surface of the sphere. The maxim~nl values of $ obtained for optimmn~ r are given in 

Table I. 

L~atural~y, these values satisfy the condition Smax < -2.3, stemming from the consideration 
of the limiting value k = I, for which the electric power cons~mn~ption is zero, as is seen 
from (3.2). Of course, the electromagnetic tractive force and the efficiency (3.2) cannot be 
positive. Hence the limitation on Smax. The quantities F and q pass through zero when 
k0 > 1 and so a propulsion occurs and electromagnetic braking corresponds to 1 < k < k0. 

_ _ 1 _ . 1  J l  ..... Since the latter is not of interest, the values of k0 are not u~•177 ~L~ (an . . . . . . . .  ~na• 

d~t~•177 situation for a flat plate was investigated in greater - -~ 
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m ~  • 2 

20 
22 
24 
26 
28 

Al 

4,02t.i0 -~ 
i,827.10 -~ 
i,032.10 -~ 
6,233.i0 -a 
3,893.i0 -a 

30 
32 
34 

A l 

2,496.10 -s 
1,633-t0 -~ 
t,085, i0-~ 

36 
38 
40 

A l  

7,3i3.10 -a 
4,982.~0 -a 
3,432.10 -a 

TABLE 3 

Cp 

1,066 ] 0,018 
i,i6i 0,063 

c! 

0,0938 
0,0862 

c d 

O,ii2 
0,i49 

0,0090 
0,0t74 

q 

0,432 l 0,541 
0,466 0,667 

N~ 

9,8 
6,75 

/ 
750 \\\ .:.,Z-----:'/~ 

250 

o 4} 

o o,~-  

2 
15~ e , deg 

4,~d~,~0 ~ -C(:,#o ~ 

7----- 

Fig. 5 Fig. 6 

The B~~ profiles are syv:m~etric about the angle 8 = 90 ~ and so they are given between 
the limits 0 _< e _< 90 ..... . i,~ dashed lines here represent o~ ~ 0 for the mu•177177 ~s ;~ 0, ~Z>m = 

0. The optim-mT~ profiles are "filled" substantially more than are those of the multipole. We 

note that B~ ~ then reaches maximum at 6 = 90 ~ for m > I0 while for m = 2 and 4 the profiles 

have two maxima located s~vr~netrically about e = 90 ~ This qualitative difference is clearly 
due to the following characteristic features. At large m >> 1 the electromagnetic fields 
decrease rapidly with distance from the surface of the sphere and are concentrated in a thin 

liuid varies •177 ~- surface layer with a thickness of the order of " / ......... • w,eL~ the velocity ='-~ 
with respect to the radius. At small m ~ 1 the electromagnetic fields occupy a region of 
space outside the sphere with a ~na~a~L~r.~t• uzmen~lou of Lu~ order of I, wL,~ru the distri- 
bution v(r, 8) varies substantially with respect to .... un~ angle 8 anu .... with respect to the 

ulstl -uLltiun~ radius. Naturally, qualitatively different optim-~n-= ............ of the fields E B corres- 
pond to the limiting cases. 

..... found (see Table I) in fact gives the solution of variational .... r) proux~m ~' in the �9 . e  Pmax 
form q(k) (3.4), where F is defined as a function of k by expression (3.3). ~le calculated 

results in Figs. 2-4 are given as q(F) curves, obtained by eliminating k from the functions 
N(k) and ~ : ' - ~  (solid lines) for m . . . . .  ~) = I0, 20, and 30. The uorr~sponu• values of k for each 
point of the curves are easily reconstructed from :~ ' ~ (see ~J.~) for ~1 with ~•177 ....... for ~max 
Table I). We see that the functions -:=~ ~i~=) are norm~onotonic as in the case of a plate of finite 

_ . 1  z _ 1  width [7]; for each m there exists a maximm-a value ~]nlax, w n •  is attained at a certain 
tractive force F. Corresponding to each ~] < rlmax are two values of F, the larger of which is 
of practical interest. In Figs. 2-4 the ~](F) curves for the multipole are shown by dashed 

lines for comparison. The maxim-~[~ ~](F) for the optim~ distribution are only slightly 
~uu~tantia• larger than the corresponding values for the multipole, while the gain in rl is ....... " ~ 
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for large F. In Figs. 3 and 4 the dash-and-dot lines represent the D(F) dependences obtained 

by solving problem A, using condition (l.10b) with h2(8) = sin (e). These data illustrate 

the statement that problem A leads to lower values of q than do the results of optimization 
on formulation B. 

We must point out that in all the cases uz~cu~eu *]max are less than (or only ~• ....... 
exceed) 0.5 for large m when the electromagnetic fields are concentrated in a thin surface 
layer, where the velocity field depends weakly on the radius (the boundary larger is not 
taken into account)�9 The situation is very clo~e to that of a flat plate [7] and, it would 
seem, it should ensure values of qmax close to I. ~ . . . .  t~app~n a �9 **• does not ~ . . . . . . .  for ~pn~r~--~-- - since 
the ..... uuuy forces is 1.5 times the velocity u• u**~ •177 velocity at the location of the main . . . . . . . . .  

sphere and the propulsive efficiency %1/1.5. As a result, when m increase~ 'Imax approaches 
2/3 . . . .  . anu not I, as for a flat plate 

4. "- resu• se•177 w e  give some initial ...... of n~erical ~ u u u •  ........ of YdiD •177 .... around a ........... 
sphere, equipped with the optimum source found These results support the va•177177 of uue 
ass~n)ptions that were the basis for the formulation of simplified variational problems and 
also demonstrate the possibility of a further reduction of the energy expenditure for propul- 
sion of the sphere in comparison with that obtained earlier [5]. 

As in [5], the calculations were carried out for Re = • for m = 20 pole pairs. ~--• 
optimum source is characterized by uu~ function X0(8), -wu• ....... is specified by its own expansion 
coefficients ~ ~1 k~au• 2): 

m+40 [(l--m)/2] 

z = m  s = o  . ( l - - 2 s - - m ) !  

The distribution B~ ~ corresponding to this function is shown in Fig. I. ~-~,~ electric poten- 
tial at the surface of the sphere is given by a function, which on the basis of (3.5) has the 

form 

3 r a  m + 4 o  A Z  

*.o (o) k o) 
l=ra  

_ _ _ J J  . . . .  ~ _  mnu uepenu~ on the load parm~eter k. 

For given Re and m the flow without separatia~ around the sphere has a complex multiscale 
structure (with the characteristic scale of the problem approximately equal to I, as deter- 
mined by the geometry, the ........... layer has a thickness ~Re-~/2 .... uuunudLy auu the region of the force 
field is characterized by a thickness ~m -1, with Re-l/s << m -I << I). Accordingly, the calcu- 
lations were carried out on a f~r, ily of embedded nets in order to eliminate errors [4]. This 
requires much computer time and because of this calculations have been made thus far only for 

i~ wn• unu~n quite at random -'-~- the two values of k (1.066 and 1 • the first of ....... was ....... �9 W l l l •  

. . . .  i7(F) curve (see Fig. 4) with '1 u. Ju~ for the second corresponds to the highest point on Lu~ - ~ =~= 
optim~n~ system. 

<dash~u Figure 5 shows the distributions of the vorticity (solid lines) and pressure ~ .... 
lines) over the surface of the sphere (curves I, 2 for k = 1.066, 1.161). We see that the 
distribution of w and p are close for these values of k. The vorticity w is greater than zero 
over the entire surface, i.e., the flow around the sphere occurs without separation. In the 

maue more uomp• tna** , ~max anu this it stern region, however, w is less ..... 1 while '- % l0 s . . . . . . . . . . . . . . . .  
to obtain a numerical solution. The distribution of p is close to the pressure distribution 

for nonviscous flow around the sphere (uasu-aud-uut ~" -~ ...... =- • which ensures that the pressure 
pxeateau, where tn~ p~e~suL~ • roughly constant, exists in the drag coefficient c~. ' "-~ - - " . . . . . . . . . . . . . . . . . . . . . . . .  

stern region. Table 3 shows the resultant integrated parameters, which characterize the 

self-propulsion regime. 

The values of F and U obtained for each k have been transferred from Table 3 to Fig. 3 
(points 1 and 2). These points lie close to the D(F) curve obtained as the solution of 

variational problem B. 

In Fig. 6, lines I, 1'-3, and 3', respectively, give the distribution of Er(r, 8) (taken 
with a minus sign), fs, and v e (the dashed lines correspond to the nonviscous state). We 
see that the distributions of Er(r, 8 = ~u~n~ and vs(r, 8 = 90 ~ ) are close to those of non- 
viscous flow everywhere, except for the boundary-layer region. The distributions of f8 (r, 
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8 = 90 ~ ) differ more from each other because of the large changes in vs, E, and B in the 

region - = . . . . . .  = = u.uec consideration aim also because the terms in the expression f8 {[E • B] + 

[(v • B) • B]}% have different signs. 

The analysis implies that the use of approximation t~.~ I) to estimate the integrated 

energy quantities is allowable�9 Since c d for self-propulsion depends rather strongly on k, 
however, it would be desirable to obtain the solution of the complete variational problem 

without the simplifying assmaption (2.1). 

The penultimate coltmm of Table 3 contains the parameter q [5], which is the ratio of 

the electric power consumption and the mechanical power during towing with the same velo- 

city and describes the efficiency of the MHD method of propelling a body�9 The value q = 
0�9 obtained for k = 1.066 shows that the energy consumption for propulsion of a sphere 
with a given >HiD source is only 54% of that for towing and demonstrates that it is possible 

in principle further to reduce the energy ca-s~-aptia~for propulsion of the sphere in compari- 
son with [5] (q = 0.58 in LJ]rrl), thus confirming that fu~u,er' ........... t eauas is promising. 
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